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CHAPTER FIVE

Miscellaneous Topics

1 Wave localization in a random medium

There are numerous situations where one needs to know how waves propagate through a

medium with random impurities: light through sky with dust particles, sound through

water with bubbles, elastic waves through a solid with cracks, Þbers, cavities, hard or

soft grains. Sea waves over a irregular topography, etc. In these situations several kinds

of questions can be of physical interest : determinstic (sinusoidal or impulsive) waves

through a random medium, random waves through a deterministically irregular medium,

and random waves through a random medium.

There is an extensive literature on the propagation of inÞnitesimal sinusoidal waves

in random media. Based on linearized Þeld equations, perturbation theories have been

developed for cases where the random inhomogeneity is weak and the ßuctuation length

scale is comparable to the typical wave length (see, Chernov, 1960; Keller, 1964, Karal &

Keller, 1964; Chen & Soong, 1972). Diagrammatic techniques have also been employed (

Frisch, 1968; Elter & Molyneux, 1972). If the inhomogeneities extend over a large spatial

region, multiple scattering yields a change in the wavenumber (or phase velocity) as well

as an amplitude attenuation over a large distance. These changes amount to a shift of the

complex propagation constant with the real part corresponding to the wavenumber and

the imaginary part to attenuation. In particular, the spatial attenuation (localization)

is a distinctive feature of randomness and is effective for a broad range of incident wave

frequencies.This is in sharp contrast to periodic inhomogeneities which cause strong

scattering only for certain frequency bands (Bragg scattering, see e.g., Nayfeh). Phillip

W. Anderson (1958) was the Þrst to show that the quantum- mechanical motion of

a particle in a random potential can be localized in space, turning a conductor to an

insulator. This phenomoena, now called Anderson localization, is now known to be
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important in classical mechanical systems too. A survey of localization in many types

of classical waves based on linearized theories can be found in the monograph by Sheng

(1998). For surface water waves, localization by strong inhomogeneities have also been

treated by semi-numerical means for surface water waves over randomly rough seabed

where the height of the roughness is comparable to the mean depth (Devillard et al,

1988; Nachbin & Papanicolaou, 1992; Nachbin, 1995). Experimental conÞrmation has

been reported by Belzons et al (1988).

For weak inhomogeneties, the shift of propagation constant amounts to slow spatial

modulations with a length scale much longer than the wavelnegth by a factor inversely

proportional to the correlation of the ßuctuations. In this section we use the method

of multiple scales to examine weak random inhomogeneities. The simple case of an

elastically supported string is used as an example, while extensions to other waves

can be anticipated. After deriving the envelope equation, physcial implications will be

explored.

We begin with the equation for the lateral displacement of a taut string, which is

buried in a linear elastic medium,

ρ
∂2V

∂t2
− T ∂

2V

∂x2
+K(1 + ²M(x))V = 0 (1.1)

V denotes the lateral displacement, ρ the mass per unit length, T tension in the string,K

the mean spring constant of the surrounding medium, ²KM(x) the random ßuctuations

of the linear spring force. We assume thatM has zero mean and the typical length scale

of O(1/k). For the sake of demonstration we have chosen to let the linear part of the

spring to contain random irregularities. In principle the randomness can appear in the

density ρ also.

Since the correlation of a random function is proportional to the square of the am-

plitude of random ßuctuations, the length scale of modulation due to randomness must

be of the order O(1/k²2. Let us introduce fast and slow variables x, x2 = ²
2x and further

assume two-vairiable expansions,

V = V0 + ²V1 + ²
2V2 + · · · , with Vn = Vn(x, x2, t), n = 0, 1, 2, ... (1.2)

In the multiplescale formalism, we Þrst pretend the two variables to independent, then

use the deÞnition of the slow variable x2. In particular, we must make the following
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replacement:

∂F (x, t)

∂x
→ ∂F (x, x2, t)

∂x
+
∂F (x, x2, t)

∂x2

∂x2
∂x

=
∂F

∂x
+ ²2

∂F

∂x2
(1.3)

The following perturbation equations result:

O(²0):

ρ
∂2V0
∂t2

− T ∂
2V0
∂x2

+KV0 = 0 (1.4)

O(²):

ρ
∂2V1
∂t2

− T ∂
2V1
∂x2

+KV1 +KMV0 = 0 (1.5)

O(²2):

ρ
∂V2
∂t2

− T ∂
2V2
∂x2

+KV2 +KMV1 − T
Ã
2
∂2V0
∂x∂x2

!
= 0. (1.6)

Let us take the leading-order solution to be a progressive wave

V0 = A (x2) e
i(kx−ωt) (1.7)

with the dispersion relation

ω =

Ã
Tk2 +K

ρ

!1/2
, C =

ω

k
=

Ã
T

ρ
+
K

ρk2

!1/2
. (1.8)

At the order O(²) Eqn. (1.5) can be written

ρ
∂2V1
∂t2

− T ∂
2V1
∂x2

+KV1 = −KM(x, x2)Aeikx−iωt. (1.9)

where the forcing term on the right is a random function of x and x2. Let

V1 = V 1e
−iωt (1.10)

then
∂2V 1
∂x2

+ k2V 1 =
K

T
M(x, x2)A(x2)e

ikx, (1.11)

where use is made of

k =

Ã
ρω2 −K
T

!1/2
. (1.12)

From here on we consider the frequency to be above cutoff
q
K/T so that k is real and

positive. Equation (1.11) can be solved by using the Green function,

G =
−i
2k
eik|x−ξ| (1.13)
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which satisÞes the radiation condition at inÞnities. The result is

V 1 =
−iKA
2kT

Z ∞

−∞
eik|x−ξ|M(x)eikξdξ (1.14)

so that

V1 =
−iKA
2kT

eikx−iωt
Z ∞

−∞
dξeik|x−ξ|e−ik(x−ξ)M(x) (1.15)

which behaves as outgoing waves as x− ξ → ±∞.
Since the ensemble average of M(x) vanishes, i.e., hM(x)i = 0, we have,

hV1i = hV 1ie−iωt = 0. (1.16)

The ensemble average of Eq. (1.6) becomes

ρ
∂2hV2i
∂t2

− T ∂
2hV2i
∂x2

+KhV2i− T
Ã
2ik
∂V0
∂x2

!

+
∙
K
½−iK
2kT

Z
eik|x−ξ|hM(x)M(ξ)ie−ik(x−ξ)dξ

¾
eikx−iωt

¸
= 0 (1.17)

where hM(x)M(ξ)i is the correlation function of the irregularities. Equating the sum
of all secular terms to zero, we get the evolution equation for A,

−2iωρ
Ã
Cg
∂A

∂x2

!
− iK

2A

2kT

Z ∞

−∞
hM(x)M(ξ)ieik|x−ξ|e−k(x−ξ)dξ = 0 (1.18)

where where

Cg =
∂ω

∂k
=
Tk

ρω
(1.19)

is the group velocity.

As a speciÞc example we take

hM(x)M(ξ)i = σ2e−α|x−ξ|, (1.20)

thus ²σ corresponds to the root-mean-square of the ßuctuation amplitude. The cor-

rleation length scale is 1/α. small α means a high degree of randomness. It can be

shown thatZ ∞

−∞
eik|x−ξ|σ2e−α|x−ξ|e−ik(x−ξ)dξ = σ2

"
2 (α2 + 2k2)

α(α2 + 4k2)
+

2ik

α2 + 4k2

#
. (1.21)

(Chen & Soong, 1972). Let

2β = 2 (βr + iβi) (1.22)
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with

βr = −
Ã
K2σ2

2ρωT

!
1

α2 + 4k2
, βi =

Ã
K2σ2

2ρωT

!
(α2 + 2k2)

kα(α2 + 4k2)
. (1.23)

we get from (1.17)

2i

Ã
Cg
∂A

∂x2

!
+ 2βA = 0. (1.24)

If we write

A = a(x2)e
iθ(x2) (1.25)

where a is the magnitude and θ the phase of A. From the real part we get

θ = βrx2/Cg (1.26)

From the imaginary part we get

2Cg
∂a

∂x2
+ 2βia = 0, (1.27)

hence

a(x2) = A0 exp

Ã
−βix2
Cg

!
. (1.28)

showing that the incident waves are attenuated (localized) by random irregularities.The

ratio of attenuation (localization) distance is

L =
Cg
²2βi

=
2ρωCgTk

²2K2σ2
α(α2 + 4k2)

α2 + 2k2
=
2T 2k2

²2K2σ2
α(α2 + 4k2)

α2 + 2k2
. (1.29)

For Þxed α and k, L is small (strong attenuation) if the ßuctuation amplitude ²σ is

large. For Þxed ²σ, L is also large for large k (short waves) or large α, corresponding to

small correlation distance (very random).

The total change in wave number due to randomness is

∆k =
²2βr
Cg

= − ²
2

Cg

K2σ2

2ρωkT

1

α2 + 4k2
= −²

2K2σ2

2T 2k

2k

α

1

α2 + 4k2
(1.30)

It is negative, hences contributes to the lengthening of waves or increase in phase velocity.

The magnitude of the wavenumber shift increases with increasing ²2σ2 and descreasing

α ( decreasing randomness).

IAP (challenge) Project : Scattering of elastic waves by random distribution of

hard grains or cavities.
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In short, physics has discovered

That there are no solids,

No continuous surfaces,

No straight lines;

Only waves,
.............

R. Buckminster Fuller, Intuition: Metaphysical Mosaic.

8


